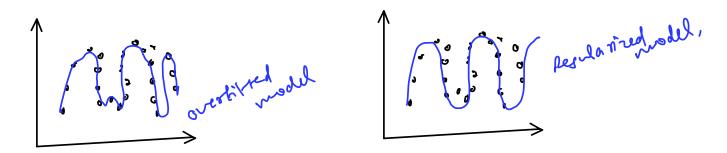
Norms and Regularization

Machine Learning

What is Regularization

- A set of techniques to discourage overly complex models.
- as an overly complex model might mean that model is overfitting.



Overfitting: When a model exhibits very low error (or high accuracy) on the training data but performs significantly worse when presented with new, unseen data (i.e., the validation or test set).

Steps in a Machine Learning Problem

Problem Definition Data Collection and Wrangling

Data Preprocessing and Feature Engineering

Modeling and Algorithm Theory

Evaluation and Improvement

Regularization

How do we solve this Problem

Generally we use the concept of Norms,

In ML, we measure size of vectors using a function called a norm.

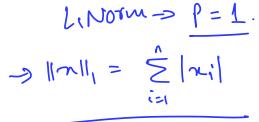
Formally, Lp Norm

It is represented by:

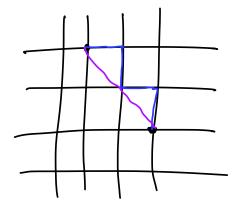
$$||x||_p = (\Sigma_i |x_i|^p)^{1/p}$$

L1 Norm is known as Frobenius Norm or Manhattan Norm

L2 Norm is known as Euclidean Norm



$$||x||_2 = \left(\sum_{i=1}^{n} |x_i|^2\right)^{\frac{1}{2}}$$



Quick History Lesson

Lp Norm:

French mathematician Henri Léon Lebesgue. His work on the Lebesgue integral (early 1900s) was crucial for defining these spaces.

Quick History Lesson

L2 Regularization (Ridge Regression):

Arthur E. Hoerl and Robert W. Kennard (1970) introduced Ridge Regression in their paper: Ridge Regression: Biased Estimation for Nonorthogonal Problems.

"Adding a small amount of bias (the L2 penalty) to the least squares objective could significantly reduce the variance of the coefficient estimates, solving the problem of multicollinearity."

L1 Regularization (Lasso Regression): >> Sparsity W Matrix-

Tibshirani (1996) introduced the Lasso (Least Absolute Shrinkage and Selection Operator) in his paper: Regression Shrinkage and Selection via the Lasso.

"Using the L1 norm penalty had a unique and highly desirable side effect: it would shrink some coefficients exactly to zero, effectively performing automatic feature selection." This sparsity property distinguished it from Ridge Regression.

L2 Norm

$$||n||_2 = \left(\sum_{i=1}^{n} |n_i|^2\right)^{\frac{1}{2}} = (n_1^2 + n_2^2 + - - n_n^2)^{\frac{1}{2}}$$

Total loss = D.L. + Penalty.

Penalty =
$$\Lambda \cdot (Lp Norm)$$

Sherph $P=1,2$

$$P = \lambda \cdot (\sqrt{|x|}(nr)^{2})^{\frac{1}{2}} \quad \omega \in M$$

$$\frac{\partial P}{\partial \omega} = \frac{2\lambda\omega}{\omega} \cdot \sqrt{|x|^{2}} \quad \omega \in M$$

$$\omega \uparrow \rightarrow Pendly J$$

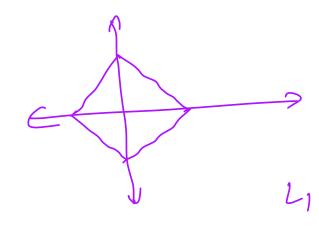
L1 Norm

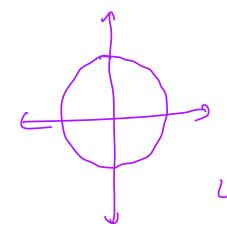
$$\|\mathbf{n}\|_{1} = \sum_{i=1}^{n} [\mathbf{n}i] = (\mathbf{n}i) + \|\mathbf{n}_{2}\|_{---} \|\mathbf{n}_{n}\|_{1}$$
 $\frac{\partial P}{\partial w} = \lambda \cdot (\mathbf{aign}(w)).$
 $\frac{\partial P}{\partial w} = \lambda \cdot (\mathbf{aign}(w)).$
 $\frac{\partial P}{\partial w} = \lambda \cdot (\mathbf{aign}(w)).$
 $\frac{\partial P}{\partial w} = \lambda \cdot (\mathbf{aign}(w)).$

Spanity -> W Marin,

Plotting L1 and L2 Norm

$$L_1 = |w_1| + |w_2|$$
 $L_2 = |w_1|^2 + |w_2|^2$





Weights Updation

Lifey . = winer = wind - Life () (wind)

wind = large (+). -> winer +

-> (mall(+) -> winer = co.

Penulty, = const.

L2 leg. -> wiver = Will - IR / dlor, + 2/wi)

Will - Iange (+) -> wine +

-> lange (-) -> wine -> 0
-> small ch -> 5 light push.

Code - Python

```
1 # Import Libraries
2 import numpy as np
 3 import matplotlib.pyplot as plt
4 import pandas as pd
6 from sklearn.datasets import load_diabetes
8 from sklearn.linear_model import LinearRegression, Lasso, Ridge
   from sklearn.model selection import train test split
11 from sklearn.metrics import mean_squared_error, r2_score
13 from sklearn.preprocessing import StandardScaler
   from sklearn.pipeline import Pipeline
16 diabetes = load_diabetes()
18 X, y = diabetes.data, diabetes.target
19 feature_names = diabetes.feature_names
21 # Split data into training and testing sets
22 X_train, X_test, y_train, y_test = train_test_split(
       X, y, test size=0.3, random state=42
```

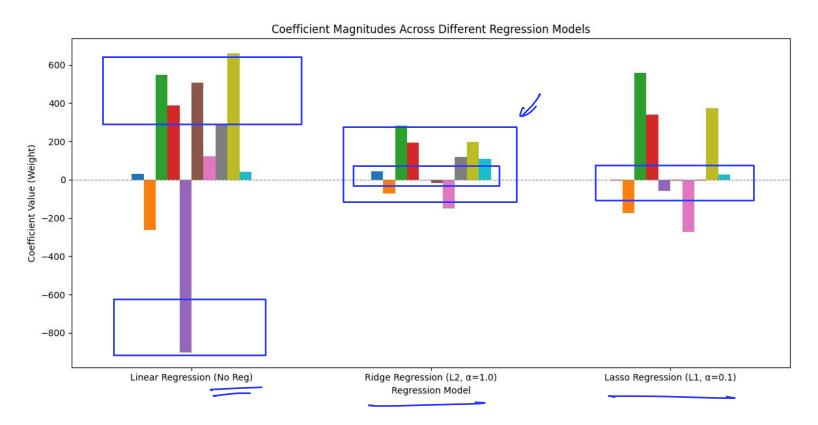
```
2 model_linear = LinearRegression()
 4 # L2 Regularization (Ridge)
   alpha_ridge = 1.0 # Common starting point for L2
   model ridge = Ridge(alpha=alpha ridge)
   # L1 Regularization (Lasso)
   alpha_lasso = 0.1 # A value to promote sparsity in this dataset
   model lasso = Lasso(alpha=alpha lasso, max iter=10000)
   models = {
       "Linear Regression (No Reg)": model linear,
       f"Ridge Regression (L2, α={alpha_ridge})": model_ridge,
       f"Lasso Regression (L1, α={alpha_lasso})": model_lasso
19 results = []
   coef_df = pd.DataFrame(index=feature_names)
```

Code - Python

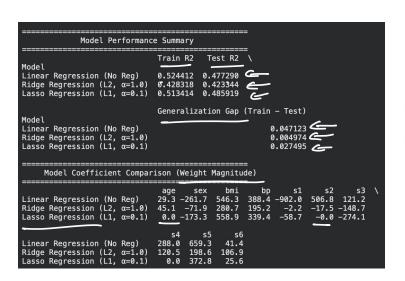
```
• • •
 2 print("--- Training and Evaluation ---")
   for name, model in models.items():
       results.append({
            'Test R2': test r2,
            'Generalization Gap (Train - Test)': train r2 - test r2
       print(f" R2 Train/Test: {train_r2:.3f} / {test_r2:.3f}")
       print(f" Generalization Gap: {train_r2 - test_r2:.3f}")
                       Model Performance Summary")
34 results_df = pd.DataFrame(results).set_index('Model')
38 print(" Model Coefficient Comparison (Weight Magnitude)")
39 print("="*50)
```

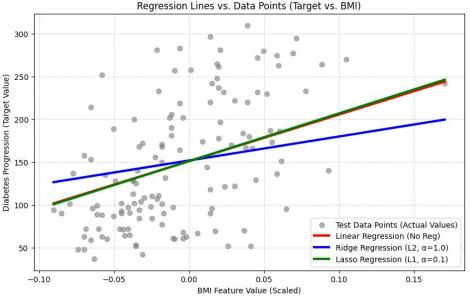
```
fig, ax = plt.subplots(figsize=(12, 6))
   # Plot the coefficients side-by-side
    coef_df.T.plot(kind='bar', ax=ax, legend=False)
    # Add line for zero coefficient
   ax.axhline(0, color='grey', linestyle='--', linewidth=0.8)
   ax.set_title("Coefficient Magnitudes Across Different Regression Models")
11 ax.set_xlabel("Regression Model")
12 ax.set_ylabel("Coefficient Value (Weight)")
   ax.set xticklabels(coef df.columns, rotation=0)
   # Highlight Lasso's zero coefficients
    for rect in ax.patches:
        if rect.get_x() > 1.5 and abs(rect.get_height()) < 0.1: # Check for Lasso bars near zero</pre>
            rect.set color('red')
    plt.tight_layout()
   plt.show()
```

Results



Training and Evaluation Results





References

- 1. Ridge Regression: https://homepages.math.uic.edu/~lreyzin/papers/ridge.pdf
- 2. Lasso Regression: https://academic.oup.com/jrsssb/article/58/1/267/7027929
- 3. Notebook with Code: https://colab.research.google.com/drive/1vQw3tayW6sKwG1mdiRFgx9gF8gaGCXp_?usp=sharing
- 4. Bishop Pattern Recognition and Machine Learning 2006:

 https://www.microsoft.com/en-us/research/wp-content/uploads/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
- 5. Deep Learning Ian Goodfellow, Yoshua Bengio and Aaron Courville: https://www.deeplearningbook.org/